

Available online at www.sciencedirect.com

Polyhedron 22 (2003) 2499-2514

www.elsevier.com/locate/poly

Synthesis of 2-iminonitroxide-substituted phenols and pyridine-3-oles. Copper(II) complexes with imino nitroxides containing 2-hydroxyphenyl substituents

Eugene V. Tretyakov, Ilia V. Eltsov, Sergey V. Fokin, Yurii G. Shvedenkov, Galina V. Romanenko, Victor I. Ovcharenko*

International Tomography Center, Siberian Branch, Russian Academy of Sciences, Institutskaya str., 3a, RU-630090, Novosibirsk, Russian Federation

Received 19 November 2002; accepted 23 January 2003

Abstract

Methods for the synthesis of a new family of nitronylnitroxides, iminonitroxides, and their precursors with 2-hydroxyphenyl or 3hydroxypyridin-2-yl substituents in the side chain have been developed. Five heterospin chelates of Cu(II) with deprotonated iminonitroxides have been isolated. Their structure and magnetic properties have been studied. In all complexes, ferromagnetic intramolecular exchange interactions take place $(J \sim 40-350 \text{ cm}^{-1})$. © 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Imino nitroxide; Nitronyl nitroxide; Cu(II) complexes; Molecular magnets

1. Introduction

Molecular ferromagnet design based on complexes of paramagnetic metal ions with nitroxides is becoming an area of active interest, as evidenced by the growing number of experimental works and reviews [1,2]. The necessity of constructing highly dimensional heterospin structures stimulates the development of syntheses of increasingly complex polyfunctional nitroxides. As functional groups it is desirable to use combinations of donor groups leading to stereochemically nonrigid complexes with potentialities for higher coordination numbers of the metal ion. The latter, in turn, opens up extra opportunities to increase the structural dimensionality of the heterospin complex. Among the classical stereochemically nonrigid metal-containing matrices are complexes with Schiff bases [3,4]. It is not surprising, therefore, that procedures are available for syntheses of transition metal complexes with various spin-labeled

E-mail address: ovchar@tomo.nsc.ru (V.I. Ovcharenko).

Schiff bases containing piperidine [5–7], pyrrolidine [8] or 3-imidazoline [9] nitroxides as a paramagnetic fragment. Since the paramagnetic centers in these complexes are separated by a reasonably long chain of chemical bonds, the exchange interactions in the complexes equal several cm^{-1} in magnitude [9]. To enhance the energy of exchange interactions between the odd electrons of the nitroxide and the metal ion we decided to develop methods for the synthesis of a series of spin-labeled Schiff bases based on 2-imidazoline heterocycles as well as metal complexes with them. The aim of our project is to develop synthesis of heterospin polymer compounds from vicinal dihydroxyaryl derivatives of bisiminonitroxides of the type presented below:

A consistent approach to such biradicals demands a preliminary work on synthetic procedures for simpler spin-labeled derivatives. This paper describes synthetic procedures for nitronyl nitroxides 4a-g, 9, paramag-

^{*} Corresponding author. Fax: +7-3832-33-1399.

^{0277-5387/03/\$ -} see front matter (C) 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0277-5387(03)00228-6

netic Schiff bases with a 2-imidazoline ring HL^1-HL^8 , and heterospin complexes of Cu(II) with L^1-L^4 . The preliminary results are presented in Ref. [10].

2. Experimental

2.1. Materials and instruments

All the solvents used were reagent quality. Removal of all solvents was carried out under reduced pressure and all commercial reagents were used without additional purification. Unless otherwise stated, the reactions were monitored by TLC on Silufol® UV-254 plates (Silpearl on aluminium foil, Czecho-Slovakia). Silica gel 'Merck' (Silica gel 60 0.063-0.200 mm for column chromatography) and Al₂O₃ (neutral, analytical grade, for chromatography, Russia) were used for column chromatography. ¹H NMR spectra were recorded at 25 °C using a Bruker Avance 300 spectrometer locked to the deuterium resonance of the solvent. Chemical shifts were calculated relative to solvent signals used as the internal standards: $\delta_{\rm H}$ 2.05 ppm for acetone- d_6 , δ_H 2.50 ppm for DMSO- d_6 , δ_H 7.240 ppm for CDCl₃. The synthesis of 2,3-bis(hydroxylamino)-2,3dimethylbutane (2) was described previously [11,12]. 2-Hydroxy-3-nitrobenzaldehyde and 5-bromo-2-hydroxy-3-nitrobenzaldehyde were prepared by nitration of correspondingly salicylaldehyde and 5-bromo-2-hydroxy-benzaldehyde. The structures were confirmed by IR and NMR spectra. Other reagents were commercially available, and used without further purification.

2.2. Syntheses of compounds

2.2.1. 2-(2-Hydroxy-phenyl)-4,4,5,5-tetramethylimidazolidine-1,3-diol (**3a**)

A mixture of **2** (0.45 g, 3.0 mmol) and salicylaldehyde (0.37 g, 3.0 mmol) in MeOH (10 ml) was stirred at ambient temperature for 3 h, and the solvent was evaporated. The residue was washed with hexane, filtered off, and recrystallized from CHCl₃. Yield 0.39 g (52%), colourless needles, m.p. 154–155 °C. ¹H NMR (acetone- d_6): $\delta = 1.18$ (s, 6H, Me), 1.24 (s, 6H, Me), 4.78 (s, 1H, H(2)), 6.65–6.79 (m, 2H, H(3'), H(5')), 7.08–7.23 (m, 2H, H(4'), H(6')), 7.45 (br. s, 2H, N–OH). IR (KBr): \tilde{v} (cm⁻¹) 610, 674, 721, 731, 752, 788, 813, 830, 860, 896, 922, 946, 969, 1005, 1036, 1109, 1151, 1209, 1238, 1263, 1366, 1382, 1496, 1595, 1618, 2904, 2988, 3314 br. *Anal.* Found: C, 61.8; H, 8.2; N, 10.8. Calc. for C₁₃H₂₀N₂O₃: C, 61.9; H, 8.0; N, 11.1%.

2.2.2. 2-(5-Bromo-2-hydroxy-phenyl)-4,4,5,5tetramethyl-imidazolidine-1,3-diol (**3b**)

A mixture of **2** (1.47 g, 10.0 mmol) and 5-bromo-2hydroxybenzaldehyde (2.01 g, 10.0 mmol) in MeOH (20 ml) was stirred for 12 h at ambient temperature. The resulting precipitate was filtered off and recrystallized from AcOEt. Yield 2.42 g (73%), white powder, m.p. 193–194 °C, $R_{\rm f}$ (AcOEt) 0.85. ¹H NMR (acetone- d_6): $\delta = 1.18$ (s, 6H, Me), 1.24 (s, 6H, Me), 4.78 (s, 1H, H(2)), 6.67 (d, 1H, J = 8.6 Hz, H(3')), 7.28 (dd, 1H, J = 8.6 Hz, J = 2.5 Hz, H(4')), 7.36 (d, 1H, J = 2.5 Hz, H(6')), 7.65 (br. s, 2H, N–OH), 11.0 (br. s, 1H, OH). IR (KBr): \tilde{v} (cm⁻¹) 628, 656, 719, 736, 789, 824, 885, 904, 927, 947, 966, 1005, 1039, 1081, 1126, 1150, 1199, 1261, 1352, 1369, 1380, 1392, 1455, 1486, 1585, 1609, 2897, 2979, 2995, 3352 br. *Anal.* Found: C, 47.1; H, 5.9; Br, 24.2. Calc. for C₁₃H₁₉BrN₂O₃: C, 47.1; H, 5.8; Br, 24.1%.

2.2.3. 2-(2-Hydroxy-5-nitro-phenyl)-4,4,5,5tetramethyl-imidazolidine-1,3-diol (3c)

A mixture of **2** (0.19 g, 1.32 mmol) and 2-hydroxy-5nitrobenzaldehyde (0.20, 1.20 mmol) in MeOH (10 ml) was stirred for 24 h at ambient temperature. The solvent was evaporated in vacuum, and the residue recrystallized from a mixture of AcOEt with EtOH. Yield 0.24 g (69%), yellow crystals, m.p. 134–135 °C. IR (KBr): \tilde{v} (cm⁻¹) 744, 796, 862, 916, 943, 991, 1018, 1103, 1143, 1200, 1257, 1298, 1349, 1367, 1379, 1389, 1454, 1540, 1594, 1615, 2917, 2980, 3291 br. *Anal.* Found: C, 52.1; H, 6.3; N, 13.8. Calc. for C₁₃H₁₉N₃O₅: C, 52.5; H, 6.4; N, 14.1%.

2.2.4. 2-(5-Bromo-2-hydroxy-3-nitro-phenyl)-4,4,5,5tetramethyl-imidazolidine-1,3-diol (**3d**)

A mixture of **2** (2.96 g, 20.0 mmol) and 5-bromo-2hydroxy-3-nitrobenzaldehyde (4.92 g, 20.0 mmol) in MeOH (30 ml) was stirred for 3 h at ambient temperature. Then the reaction mixture was cooled to -10 °C, kept at that temperature for 1 h, and the resulting precipitate was filtered off. Yield 5.14 g (68%), yellow powder, m.p. 198–200 °C (AcOEt). ¹H NMR (acetone d_6): $\delta = 1.22$ (s, 6H, Me), 1.26 (s, 6H, Me), 5.01 (s, 1H, H(2)), 7.77 (d, 1H, J = 2.5 Hz, H(6')), 8.00 (d, 1 H, J =2.5 Hz, H(4')). IR (KBr): \tilde{v} (cm⁻¹) 626, 651, 696, 723, 767, 810, 823, 845, 882, 907, 920, 952, 988, 1017, 1029, 1095, 1113, 1143, 1197, 1237, 1292, 1344, 1380, 1416, 1454, 1540, 1584, 1610, 2916, 2983, 3099, 3263 br. *Anal.* Found: C, 41.9; H, 5.1; Br, 21.2; N, 11.1. Calc. for C₁₃H₁₈BrN₃O₅: C, 41.5; H, 4.8; Br, 21.2; N, 11.2%.

2.2.5. 2-(2-Hydroxy-3-nitro-phenyl)-4,4,5,5tetramethyl-imidazolidine-1,3-diol (3e)

A mixture of **2** (1.51 g, 10.0 mmol) and 2-hydroxy-3nitrobenzaldehyde (1.70 g, 10.0 mmol) in MeOH (30 ml) was stirred for 2 h at ambient temperature. After evaporation of the solvent, the residue was washed with hexane, and the solvent was decanted. A mixture of AcOEt with hexane (1:1, v/v) was added to the crude product, and the resulting mixture was kept at -10 °C for 12 h. The precipitate was filtered off. Yield 2.33 g (79%), yellow powder, m.p. 141–142 °C (from a mixture of AcOEt with C₆H₆). ¹H NMR (acetone-*d*₆): $\delta = 1.21$ (s, 6H, Me), 1.26 (s, 6H, Me), 4.99 (s, 1H, H(2)), 6.96 (dd, 1H, J = 8.3 Hz, 7.6 Hz, H(5')), 7.28 (dd, 1 H, J = 7.6 Hz, 1.4 Hz, H(6')), 7.82 (d, 1 H, J = 8.3 Hz, 1.4 Hz, H(4')). IR (KBr): \tilde{v} (cm⁻¹) 676, 750, 798, 868, 915, 942, 964, 994, 1041, 1071, 1154, 1265, 1330, 1367, 1387, 1457, 1544, 1612, 2914, 2982, 3234 br. *Anal.* Found: C, 52.3; H, 6.3; N, 14.0. Calc. for C₁₃H₁₉N₃O₅: C, 52.5; H, 6.4; N, 14.1%.

2.2.6. 2-(2-Hydroxy-phenyl)-4,4,5,5-tetramethyl-4,5dihydro-1H-imidazol-3-oxide-1-oxyl (4a) [13]

NaIO₄ (0.91 g, 4.2 mmol) was added in portions for 20 min to a stirred ice-cooled mixture of 3a (0.71 g. 2.8 mmol), CHCl₃ (10 ml), and water (10 ml). The cooling was removed, and the reaction mixture was stirred for 20 min. The chloroform layer was separated, and the aqueous layer extracted with $CHCl_3$ (3 × 10 ml). The consolidated solutions were dried with Na_2SO_4 , and the solvent was distilled off in vacuum. The residue was dissolved in C₆H₆ (3 ml) and chromatographed on an Al_2O_3 column (1.5 × 10 cm, C_6H_6 as eluent). The fraction containing 4a was concentrated to a volume of ~ 3 ml, diluted with hexane (10 ml), and cooled. The precipitate was filtered off. Yield 0.51 g (74%), blue needles, m.p. 119–120 °C. IR (KBr): \tilde{v} (cm⁻¹) 637, 766, 804, 833, 874, 1034, 1133. 1148, 1163, 1213, 1256, 1307, 1338, 1373, 1392, 1429, 1449, 1470, 1526, 1572, 1609, 2993, 3439 br. Anal. Found: C, 62.4; H, 6.8; N, 11.0. Calc. for C₁₃H₁₇N₂O₃: C, 62.6; H, 6.9; N, 11.2%.

2.2.7. 2-(5-Bromo-2-hydroxy-phenyl)-4,4,5,5tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-oxyl (4b)

NaIO₄ (0.64 g, 3.0 mmol) was added to a stirred mixture of **3b** (0.66 g, 2.0 mmol), CHCl₃ (10 ml), and water (10 ml) at 5 °C. The cooling was removed, and the reaction mixture stirred for 30 min. The organic layer was separated, and the aqueous layer extracted with CHCl₃ (2 \times 10 ml). The consolidated solutions were dried with Na₂SO₄, filtered through an Al₂O₃ layer $(1.5 \times 5 \text{ cm})$, and concentrated. The residue was ground with hexane, the solvent was decanted, and the residue recrystallized from a mixture of C₆H₆ with hexane. Yield 0.49 g (75%), blue needles, m.p. 142-143 °C. IR (KBr): \tilde{v} (cm⁻¹) 614, 641, 664, 696, 735, 763, 806, 832, 867, 884, 945, 976, 1013, 1101, 1137, 1162, 1215, 1251, 1300, 1340, 1374, 1396, 1427, 1469, 1494, 1523, 1566, 1602, 1667, 2941, 2982, 3018, 3076, 3428 br. Anal. Found: C, 47.8; H, 4.9; Br, 23.9; N, 8.5. Calc. for C₁₃H₁₆BrN₂O₃: C, 47.6; H, 4.9; Br, 24.4; N, 8.5%.

2.2.8. 2-(2-Hydroxy-5-nitro-phenyl)-4,4,5,5tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-oxyl (4c)

NaIO₄ (0.50 g, 2.3 mmol) was added to a stirred mixture of **3c** (0.20 g, 0.68 mmol), CHCl₃ (10 ml), and water (10 ml). The reaction mixture was then stirred for 1 h. The product was isolated as in procedure **4b**. Yield 0.16 g (80%), blue needles, decomp. at 160 °C. IR (KBr): $\tilde{\nu}$ (cm⁻¹) 627, 642, 677, 704, 723, 748, 828, 885, 904, 1080, 1139, 1165, 1209, 1260, 1323, 1351, 1374, 1429, 1473, 1524, 1578, 1621, 2947, 2995, 3447 br. *Anal.* Found: C, 52.8; H, 5.4; N, 14.1. Calc. for C₁₃H₁₉N₃O₅: C, 53.1; H, 5.5; N, 14.3%.

2.2.9. 2-(5-Bromo-2-hydroxy-3-nitro-phenyl)-4,4,5,5tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-oxyl (4d)

NaIO₄ (1.29 g, 6.0 mmol) was added to an ice-cooled stirred mixture of **3d** (1.50 g, 4.0 mmol), CH₂Cl₂ (30 ml), and water (30 ml). The reaction mixture was then stirred for 2 h, while the temperature was gradually raised to room temperature. The organic layer was separated, dried over Na₂SO₄, and filtered through a SiO₂ (1.5 × 10 cm) layer. After the solvent was removed in vacuum, the residue was recrystallized from C₆H₆ with charcoal (bath temperature 50–60 °C). Yield 1.26 g (84%), blue–violet needles, decomp. at 130–135 °C. IR (KBr): $\tilde{\nu}$ (cm⁻¹) 655, 697, 729, 765, 811, 878, 920, 979, 1133, 1158, 1204, 1269, 1356, 1375, 1397, 1449, 1532, 1594, 2995, 3098, 3450 br. *Anal.* Found: C, 41.6; H, 3.9; Br, 21.3; N, 10.9. Calc. for C₁₃H₁₅BrN₃O₅: C, 41.8; H, 4.1; Br, 21.4; N, 11.3%.

2.2.10. 2-(2-Hydroxy-3-nitro-phenyl)-4,4,5,5tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-oxyl (**4e**)

NaIO₄ (0.30 g, 1.40 mmol) was added to a mixture of **3e** (0.15 g, 0.51 mmol), CHCl₃ (10 ml), and water (10 ml), and the reaction mixture was stirred for 30 min at ambient temperature. The organic layer was separated, and the water layer extracted with CHCl₃ (1 × 10 ml). The combined organic solutions were dried with Na₂SO₄, the solvent was evaporated, and the residue recrystallized from a mixture of C₆H₆ with hexane. Yield 86 mg (58%), blue needles, decomp. at 125–128 °C. IR (KBr): \tilde{v} (cm⁻¹) 650, 684, 750, 806, 838, 876, 913, 971, 1136, 1163, 1215, 1287, 1354, 1396, 1432, 1450, 1520, 1537, 1579, 1609, 2940, 2974, 2992, 3088, 3441 br. *Anal.* Found: C, 53.2; H, 5.3; N, 14.1. Calc. for C₁₃H₁₉N₃O₅: C, 53.1; H, 5.5; N, 14.3%.

2.2.11. 2-(4,4,5,5-Tetramethyl-3-oxy-4,5-dihydro-1Himidazol-2-yl)-phenol (**5a**)

A mixture of 3a (0.25 g, 1.0 mmol), SeO₂ (20 mg, 0.2 mmol), and MeOH (15 ml) was stirred with boiling for 2 h (TLC monitoring; the spot of 3a vanished, and a spot

with $R_{\rm f}$ (AcOEt) 0.1 appeared; treatment of the latter with aqueous NaIO₄ led to orange coloring). The reaction mixture was cooled, and the solvent distilled off in vacuum. To the residue was added benzene (~ 10 ml), the mixture was heated to boiling and filtered (the spot with $R_{\rm f}$ (AcOEt) 0.1 vanished, and a spot with $R_{\rm f}$ (AcOEt) 0.31 appeared; treatment of the latter with aqueous NaIO₄ gave orange coloring). The resulting solution was concentrated and chromatographed on SiO_2 (AcOEt as eluent). The fractions containing 5a were consolidated and evaporated; the residue was recrystallized from a mixture of AcOEt with hexane (1:1 v/v). Yield 91 mg (40%), cream crystals, m.p. 126-127 °C. ¹H NMR (acetone- d_6): $\delta = 1.36$ (s, 6H, Me), 1.38 (s, 6H, Me), 6.41 (br. s, 1H, N-OH), 6.73-6.84 (m, 2H, H(3), H(5)), 7.35-7.43 (m, 2H, H(4), H(6)). IR (KBr): \tilde{v} (cm⁻¹) 666, 695, 753, 781, 860, 896, 943, 958, 1034, 1085, 1122, 1151, 1168, 1228, 1256, 1314, 1371, 1395, 1447, 1492, 1611, 2750, 2857, 2968, 3065, 3400 br. MS, m/z (%): 234.1380 (M⁺, 42, calcd. for C₁₃H₁₈N₂O₂ 234.1368), 217 $[M-OH]^+$ (11), 161 (7), 160 (8), 146 (15), 120 (32), 119 (5), 114 (13), 100 (12), 98 (45), 91 (6), 84 (66), 83 (6), 70 (6), 69 (100). Anal. Found: C, 66.8; H, 7.7; N, 11.9. Calc. for C₁₃H₁₈N₂O₂: C, 66.6; H, 7.7; N, 12.0%.

2.2.12. 4-Bromo-2-(4,4,5,5-tetramethyl-3-oxy-4,5dihydro-1H-imidazol-2-yl)-phenol (5b)

A mixture of **3b** (0.33 g, 1.0 mmol), SeO₂ (30 mg, 0.27 mmol), and MeOH (20 ml) was stirred with boiling for 3 h. The reaction mixture was cooled, and the solvent distilled off in vacuum. To the residue was added benzene (5 ml). The mixture was heated to boiling (as in the case of 5a, TLC showed mutual transformation of the compounds), placed on a SiO₂ (1.5×10 cm) column, and eluted with CHCl₃ (TLC monitoring; treatment of spot 5b with aqueous $NaIO_4$ led to orange coloring). The fractions containing 5b were consolidated and evaporated; the residue was recrystallized from a mixture of AcOEt with hexane (1:1, v/v). Yield 0.18 g (58%), cream crystals, m.p. 210–211 °C, $R_{\rm f}$ (CHCl₃) 0.11, $R_{\rm f}$ (AcOEt) 0.61. ¹H NMR (acetone- d_6): $\delta = 1.38$ (s, 6H, Me), 1.41 (s, 6H, Me), 6.67 (d, 1H, J = 9.3 Hz, H(3)), 7.28 (dd, 1H, J = 9.3 Hz, J = 2.8 Hz, H(4)), 7.36 (d, 1H, J = 2.8 Hz, H(6)). IR (KBr): $\tilde{\nu}$ (cm⁻¹) 658, 701, 739, 767, 786, 827, 883, 898, 936, 972, 1058, 1082, 1129, 1228, 1249, 1300, 1371, 1392, 1482, 1606, 1653, 2987, 3114, 3447 br. MS, m/z (%): 312.0456 (M⁺, 39, calcd. for $C_{13}H_{17}BrN_2O_2$ 312.0474), 295 $[M-OH]^+$ (14), 226 (13), 224 (15), 200 (23), 198 (24), 100 (33), 98 (100). Anal. Found: C, 49.8; H, 5.3; Br, 24.3; N, 9.1. Calc. for C₁₃H₁₇BrN₂O₂: C, 49.9; H, 5.5; Br, 25.5; N, 8.9%.

2.2.13. 4-Nitro-2-(4,4,5,5-tetramethyl-3-oxy-4,5dihydro-1H-imidazol-2-yl)-phenol (5c)

A mixture of 3c (0.50 g, 1.7 mmol) and SeO_2 (50 mg, 0.45 mmol) was refluxed in MeoH (20 ml) for 1 h. The reaction mixture was cooled, and the solvent distilled off in vacuum. The residue was ground with ether, and hexane was added. The residue was filtered off and recrystallized from a mixture of AcOEt with a small amount of EtOH. Yield 0.38 g (81%), yellow crystals, decomp. at 195 °C. ¹H NMR (acetone- d_6): $\delta = 1.43$ (s, 6H, Me), 1.46 (s, 6H, Me), 6.78 (d, 1H, J = 8.6 Hz, H(3)), 7.50 (dd, 1H, J = 8.6 Hz, J = 2.5 Hz, H(4)), 7.53 (d, 1H, J = 2.5 Hz, H(6)). IR (KBr): \tilde{v} (cm⁻¹) 637, 667, 694, 758, 814, 834, 922, 954, 1012, 1068, 1135, 1166, 1213, 1241, 1277, 1326, 1354, 1396, 1462, 1489, 1543, 1615, 1834, 2970, 3130, 3426 br. Anal. Found: C, 55.8; H, 6.3; N, 15.0. Calc. for C₁₃H₁₇N₃O₄: C, 55.9; H, 6.1; N, 15.1%.

2.2.14. 4-Bromo-2-nitro-6-(4,4,5,5-tetramethyl-3-oxy-4,5-dihydro-1H-imidazol-2-yl)-phenol (5d)

A mixture of 3d (3.76 g, 10 mmol) and SeO₂ (0.10 g, 0.90 mmol) was refluxed in MeOH (50 ml) for 2 h. The reaction mixture was cooled, the red residue filtered off, and the solvent distilled off in vacuum. The residue was dissolved in boiling AcOEt (30 ml), the solution was filtered to remove the insoluble yellow precipitate, and the solvent distilled off. The product was ground with hexane, and the resulting lemon yellow powder filtered off. Yield 2.63 g (73%), yellow crystals, m.p. 197–198 °C (AcOEt-hexane mixture). ¹H NMR (acetone- d_6): $\delta =$ 1.44 (s, 6H, Me), 1.48 (s, 6H, Me), 7.79 (dd, 1H, J = 2.8Hz, H(6)), 8.05 (d, 1H, J = 2.8 Hz, H(4)). IR (KBr): \tilde{v} (cm^{-1}) 696, 744, 788, 820, 889, 1026, 1123, 1165, 1247, 1299, 1373, 1394, 1523, 1614, 2982, 3426 br. Anal. Found: C, 43.7; H, 4.3; Br, 22.3; N, 11.8. Calc. for C₁₃H₁₆BrN₃O₄: C, 43.6; H, 4.5; Br, 22.3; N, 11.7%.

2.2.15. 2-Nitro-6-(4,4,5,5-tetramethyl-3-oxy-4,5dihydro-1H-imidazol-2-yl)-phenol (5e)

A mixture of **3e** (0.30 g, 10 mmol), SeO₂ (30 mg, 0.27 mmol), and MeOH (15 ml) was stirred at ambient temperature for 10 h. The solvent was distilled off in vacuum, and C_6H_6 (5 ml) was added to the residue. The mixture was heated on a water bath to boiling, and the solution was decanted on a SiO₂ (1.5×15 cm) column. This procedure was repeated eight times. The mixture was eluted with CHCl₃ (TLC monitoring, development with aqueous NaIO₄, spot 5e gives orange coloring). The fractions containing 5e were consolidated and evaporated, and the residue was recrystallized from a mixture of AcOEt with hexane (1:1, v/v). Yield: 0.21 g (75%), yellow crystals, m.p. 97–98 °C, $R_{\rm f}$ (CHCl₃) 0.38. ¹H NMR (acetone- d_6): $\delta = 1.41$ (s, 6H, Me), 1.44 (s, 6H, Me), 6.72 (t, 1H, J = 7.9 Hz, H(5)), 7.28 (dd, 1H, J = 7.9Hz, J = 1.7 Hz, H(6)), 7.36 (dd, 1H, J = 7.9 Hz, J = 1.7 Hz, H(4)). IR (KBr): \tilde{v} (cm⁻¹) 675, 699, 753, 804, 823, 864, 915, 941, 1008, 1123, 1172, 1222, 1265, 1290, 1364, 1448, 1530, 1552, 1621, 2935, 2983, 3186 br., 3404 br. *Anal.* Found: C, 55.8; H, 6.3; N, 15.0. Calc. for $C_{13}H_{17}N_3O_4$: C, 55.9; H, 6.1; N, 15.1%.

2.2.16. Preparation in solution of 2-(2-hydroxyphenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl (HL^{1}), 2-(2-hydroxy-5-bromophenyl)-4,4,5,5tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl (HL^{2}) and 2-(2-hydroxy-3-nitrophenyl)-4,4,5,5-tetramethyl-4,5dihydro-1H-imidazol-1-oxyl (HL^{5})

Method *d* (Scheme 1). A mixture of nitroxide 4a, 4b, or 4e (0.61 mmol), NaNO₂ (0.20 g, 2.90 mmol), AcOH (0.5 ml), water (0.5 ml), and CHCl₃ (10 ml) was stirred at ambient temperature till the starting nitronylnitroxide (30–50 min) disappeared. To the reaction mixture was added water (0.5 ml) and NaHCO₃ in an amount required for acetic acid neutralization. The resulting mixture was dried by mixing it with Na₂SO₄ for 5–10 min, and then filtered through a NaHCO₃ (1.5 × 1 cm)

Scheme 1. **a**, HL^{1} : $R^{1} = R^{2} = H$, X = CH; **b**, HL^{2} : $R^{1} = Br$, $R^{2} = H$, X = CH; **c**, HL^{3} : $R^{1} = NO_{2}$, $R^{2} = H$, X = CH; **d**, HL^{4} : $R^{1} = Br$, $R^{2} = NO_{2}$, X = CH; **e**, HL^{5} : $R^{1} = H$, $R^{2} = NO_{2}$, X = CH; **f**, HL^{6} : $R^{1} = R^{2} = H$, X = N; **g**, HL^{7} : $R^{1} = CH_{3}$, $R^{2} = H$, X = N. (a) 2,3-bis(hydroxylamino)-2,3-dimethylbutane (2), MeOH; (b) NaIO_{4}, CHCl_{3}, H_{2}O; (c) SeO₂, MeOH; (d) NaNO₂, AcOH, H₂O, CHCl₃.

and Al₂O₃ (1.5 × 8 cm) layers (HL¹, HL², HL⁵ decompose on SiO₂!). The iminonitroxide was eluted with CHCl₃ (10 ml). $R_{\rm f}$ (CHCl₃) is 0.87 for HL¹, 0.84 for HL², 0.52 for HL⁵; the spots are orange–red, or brown after drying. In an alternative procedure *b* (Scheme 1), HL¹, HL², and HL⁵ were prepared by oxidation of 5a, 5b, and 5e, respectively, with NaIO₄.

Importantly, other products formed when a CHCl₃ solution of HL^1 was stored for 15–25 min at ambient temperature; in this case, the color of the solution became increasingly deep brown. Concentration of a solution of HL^1 on a rotary evaporator led to increased rate of decomposition of HL^1 . No other products were observed on storage of a cooled CHCl₃ solution of HL^2 . Evaporation of the solution of HL^2 led to red oil, which converted, within a few minutes, into a mixture of brown products containing **5b**. Evaporation of the CHCl₃ solution of HL^5 formed **5e**.

2.2.17. Isolation of by-products in synthesis of HL^2

The reaction mixture obtained from nitroxide 4b (0.40 g) was dried with Na₂SO₄, the solvent was distilled off, and the residue chromatographed on SiO₂ (AcOEt as eluent). This gave two major fractions. TLC showed that the first fraction contains 5b. The second, yellowcolored fraction was evaporated, and the residue recrystallized from a mixture of petroleum ether with AcOEt. The resulting orange powder was dissolved in CH₂Cl₂ (5 ml), heptane (10 ml) was added, and the solution was allowed to stay overnight in an open flask in a thermostat. The crystalline product was filtered off and X-ray investigated. This gave 5-bromo-3-(4,4,5,5tetramethyl-imidazolidin-2-ylidene)-cyclohex-5-ene-1,2,4-trione (12). Yield 130 mg (33%), m.p. 190-191 °C, $R_{\rm f}$ (CHCl₃) 0.12. IR (KBr): $\tilde{\nu}$ (cm⁻¹) 654, 697, 729, 808, 846, 872, 905, 986, 1061, 1185, 1252, 1302, 1351, 1373, 1397, 1579, 1605, 1690, 2982, 3052, 3308. Satisfactory elemental analysis data were not obtained.

2.2.18. 2-(2-Hydroxy-5-nitrophenyl)-4,4,5,5tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl (**HL**³)

Method *d* (Scheme 1). A mixture of **4c** (0.10 g, 0.34 mmol), NaNO₂ (0.10 g, 1.45 mmol), AcOH (0.2 ml), water (0.2 ml), and CHCl₃ (10 ml) was stirred with boiling for 40 min (until the starting **4c** disappeared). The reaction mixture was cooled and filtered through an Al₂O₃ layer (1.5 × 8 cm, CHCl₃ as eluent). The solvent was distilled off, and the residue was ground with cold hexane, filtered off, and recrystallized from hexane (bath temperature 60–65 °C). Yield 40 mg (43%), red-brown crystals, decomp. at 135 °C. IR (KBr): \tilde{v} (cm⁻¹) 600, 639, 664, 681, 737, 754, 787, 836, 863, 899, 923, 957, 1070, 1129, 1143, 1159, 1229, 1273, 1298, 1342, 1379, 1398, 1433, 1449, 1485, 1523, 1592, 1622, 2932, 2989, 3121, 3431 br. *Anal.* Found: C, 56.1; H, 5.8; N, 15.2. Calc. for C₁₃H₁₆N₃O₄: C, 56.1; H, 5.8; N, 15.1%.

Method b (Scheme 1). NaIO₄ (0.10 mg, 0.47 mmol) was added to a stirred mixture of **5c** (0.20 g, 0.72 mmol), CHCl₃ (15 ml), and water (15 ml). The reaction mixture was stirred for 1 h at ambient temperature. The organic layer was separated, and the aqueous layer extracted with CHCl₃ (3×10 ml). The combined solutions were dried with Na₂SO₄, and the solvent distilled off in vacuum. The residue was recrystallized from petroleum ether with charcoal (5 ml). Yield 0.17 g (85%).

2.2.19. 2-(5-Bromo-2-hydroxy-3-nitro-phenyl)-4,4,5,5tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl (HL^4)

Method b (Scheme 1). NaIO₄ (0.48 mg, 2.26 mmol) was added in portions for 20 min to a stirred mixture of 5d (0.81 g, 2.26 mmol), CHCl₃ (20 ml), and water (15 ml). The reaction mixture was stirred for 2 h at ambient temperature. The chloroform layer was separated, and the aqueous layer extracted with $CHCl_3$ (2 × 10 ml). The combined solutions were dried with Na₂SO₄ and filtered through an Al₂O₃ layer $(1.5 \times 8 \text{ cm}, \text{CHCl}_3 \text{ as eluent})$. The solvent was distilled off before the product started to crystallize, and hexane (10 ml) was added. Yield 0.53 g (66%), red-brown crystals, decomp. at 168 °C. IR (KBr): \tilde{v} (cm⁻¹) 633, 673, 691, 719, 773, 789, 876, 897, 960, 1109, 1139, 1163, 1219, 1257, 1345, 1372, 1427, 1479, 1528, 1588, 1614, 2980, 3095, 3436 br. Anal. Found: C, 44.1; H, 4.6; Br, 22.6; N, 11.5. Calc. for C₁₃H₁₅BrN₃O₄: C, 43.7; H, 4.2; Br, 22.4; N, 11.8%.

2.2.20. 2-(5-Bromo-2-hydroxy-3-nitro-phenyl)-4,4,5,5tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-ol (10)

NaIO₄ (0.21 mg, 1.0 mmol) was added to a stirred mixture of **3b** (0.33 g, 0.72 mmol), CHCl₃ (10 ml), and water (10 ml). The reaction mixture was stirred for 20 min, and hexane (10 ml) was added. The precipitate was filtered off, dried in air, and recrystallized from CHCl₃. Yield 0.28 g (85%), colorless crystals, m.p. 135–136 °C, $R_{\rm f}$ (AcOEt) 0.75. ¹H NMR (acetone- d_6): $\delta = 1.40$ (s, 12H, Me), 6.67 (d, 1H, J = 8.6 Hz, H(3')), 7.28 (dd, 1H, J = 8.6 Hz, J = 2.5 Hz, H(4')), 7.36 (d, 1H, J = 2.5 Hz, H(6')), 8.90 (br. s, 0.3H). IR (KBr): \tilde{v} (cm⁻¹) 611, 675, 826, 853, 883, 938, 970, 1019, 1081, 1134, 1221, 1244, 1296, 1369, 1389, 1420, 1495, 1569, 2897, 2982, 3238 br. *Anal.* Found: C, 47.9; H, 5.1; Br, 24.4; N, 8.5. Calc. for C_{13H17}BrN₂O₃: C, 47.4; H, 5.2; Br, 24.3; N, 8.5%.

2.2.21. 3-Hydroxy-pyridine-2-carbaldehyde (1f)

A solution of KOH (1.12 g, 20.0 mmol) in EtOH (20 ml) was added dropwise for 30 min to a stirred suspension of 2-hydroxymethyl-pyridin-3-ol hydrochloride (3.23 g, 20.0 mmol) in EtOH (20 ml). The reaction mixture was stirred for 30 min and then filtered. The solvent was distilled off. The resulting viscous colorless oil was ground with ether, and the finely crystalline precipitate was filtered off to give 2-hydroxymethyl-pyridin-3-ol. Yield 2.31 g (92%), m.p. 183–185 °C. ¹H NMR (acetone- d_6): $\delta = 4.77$ (s, 2H, CH₂), 7.19 (dd, 1H, J = 8.1 Hz, J = 4.3 Hz, H(5')), 7.21 (dd, 1H, J = 8.1 Hz, J = 1.5, H(4')), 8.06 (dd, 1H, J = 4.3 Hz, J = 1.5 Hz, H(6)). IR (KBr): \tilde{v} (cm⁻¹) 613, 704, 744, 794, 810, 866, 882, 958, 1014, 1067, 1119, 1171, 1219, 1246, 1292, 1346, 1375, 1462, 1489, 1537, 1582, 1605, 2637, 2813, 3050, 3312 br.

A mixture 2-hydroxymethyl-pyridin-3-ol (1.25 g, 10.0 mmol), SeO₂ (0.56 g, 5 mmol), and p-dioxane (30 ml) was stirred with boiling for 6 h. After cooling, the reaction mixture was filtered, and the solvent distilled off in vacuum. To the residue was added AcOEt (15 ml), and the solution was filtered through SiO₂ (1.5×5 cm, AcOEt as eluent). The solvent was distilled off, and the crude product (1f) was purified by vacuum sublimation (90 °C/1 torr). Yield 0.58 g (47%), m.p. 79-80 °C (Ref. [14] 81–82 °C). ¹H NMR (acetone- d_6): $\delta = 7.48$ (dd, 1H, J = 8.7 Hz, J = 1.4 Hz, H(4')), 7.63 (dd, 1H, J = 8.7 Hz, J = 4.9 Hz, H(5')), 8.06 (dd, 1H, J = 4.9 Hz, J = 1.4 Hz, H(6')), 10.05 (s, 1H, CHO). IR (KBr): \tilde{v} (cm⁻¹) 647, 735, 810, 872, 1063, 1113, 1149, 1234, 1312, 1354, 1408, 1467, 1579, 1680, 2543, 3087, 3436 br. Anal. Found: C, 57.9; H, 4.2; N, 11.3. Calc. for C₆H₅NO₂: C, 58.5; H, 4.1; N, 11.4%.

2.2.22. 3-Hydroxy-6-methylpyridine-2-carbaldehyde (1g)

Compound 1g was prepared in exactly the same manner as 1f. Yield 68%, m.p. 106-107 °C, the substance completely corresponds to the compound described in Ref. [15].

2.2.23. 2-(3-Hydroxypyridin-2-yl)-4,4,5,5-

tetramethylimidazolidine-1,3-diol (3f)

To a solution of **2** (0.30 g, 2.03 mmol) in MeOH (5 ml) and C₆H₆ (5 ml) was added **1f** (0.25 g, 2.03 mmol), and the reaction mixture was stirred for 30 min at ambient temperature. The solvent was evaporated, and the residue treated with ether and filtered off. Yield 0.42 g (83%), yellow powder, m.p. 196–197 °C (AcOEt). ¹H NMR (acetone-*d*₆): $\delta = 1.23$ (s, 6H, Me), 1.26 (s, 6H, Me), 5.05 (s, 1H, H(2)), 7.48 (dd, 1H, J = 7.8 Hz, J = 1.4Hz, H(4')), 7.63 (dd, 1H, J = 7.8 Hz, J = 4.4 Hz, H(5')), 7.99 (dd, 1H, J = 4.4 Hz, J = 1.4 Hz, H(6')), 7.53 (br. s, 1.2 H), 11.3 (br. s, 0.15 H). IR (KBr): \tilde{v} (cm⁻¹) 647, 711, 740, 799, 835, 894, 912, 933, 961, 980, 1060, 1114, 1162, 1223, 1271, 1382, 1449, 1482, 1583, 2888, 2966, 2995, 3180 br., 3374 br. *Anal.* Found: C, 56.7; H, 7.7; N, 16.2. Calc. for C₁₂H₁₉N₃O₃: C, 56.9; H, 7.6; N, 16.6%.

2.2.24. 2-(3-Hydroxy-6-methylpyridin-2-yl)-4,4,5,5tetramethylimidazolidine-1,3-diol (**3g**)

Compound **3g** was prepared from **1g** in exactly the same manner as **3f**. Yield 90%, white crystals, m.p. 182–183 °C (from a mixture of AcOEt with EtOH). IR (KBr): \tilde{v} (cm⁻¹) 655, 705, 746, 770, 790, 849, 923, 1003,

1021, 1127, 1142, 1159, 1249, 1319, 1370, 1477, 1590, 2923, 2979, 3347 br. *Anal.* Found: C, 58.2; H, 8.1; N, 15.6. Calc. for C₁₃H₂₁N₃O₃: C, 58.4; H, 7.9; N, 15.7%.

2.2.25. 2,6-Bis-(1,3-dihydroxy-4,4,5,5-

tetramethylimidazolidine-2-yl)-3-hydroxypyridin (8)

Compound **8** was prepared from 3-hydroxy-2,6-dicarbaldehyde (7) [16]. Yield 72%, yellow powder, decomp. At 200 °C (AcOEt). ¹H NMR (acetone- d_6): $\delta = 1.13$ (s, 6H, Me), 1.19 (s, 6H, Me), 1.23 (s, 6H, Me), 1.27 (s, 6H, Me), 4.84 (s, 1H, H(2_{Im.})), 5.06 (s, 1H, H(2_{Im.})), 7.03 (d, 1H, J = 8.0 Hz, H(4_{Py})), 7.14 (br. s, 1.3 H), 7.43 (d, 1H, J = 8.0 Hz, H(5_{Py})), 7.60 (br. s, 1.3H), 11.3 (br. s, 0.16H). Because of the low solubility of the substance, satisfactory elemental analysis data were not obtained.

2.2.26. 2-(3-Hydroxypyridin-2-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-oxyl (4f)

To a stirred mixture of **3f** (0.51 g, 2.0 mmol), CHCl₃ (15 ml), and water (10 ml) was added NaIO₄ (0.69 g, 3.2 mmol), and the reaction mixture was stirred for 1 h at ambient temperature. The organic layer was separated, and the aqueous layer extracted with CHCl₃ (3 × 10 ml). The combined organic solutions were dried with Na₂SO₄, the solvent was evaporated, and the residue recrystallized from a mixture of C₆H₆ with hexane. Yield 0.43 g (86%), vinous powder; at 134–136 °C, the colour of the crystals changes to orange and melting occurs. IR (KBr): $\tilde{\nu}$ (cm⁻¹) 654, 748, 810, 873, 1070, 1111, 1136, 1174, 1214, 1255, 1301, 1371, 1411, 1465, 1508, 1534, 1580, 1684, 1717, 2998, 3446 br. *Anal.* Found: C, 57.7; H, 6.2; N, 16.5. Calc. for C₁₂H₁₆N₃O₃: C, 57.6; H, 6.4; N, 16.8%.

2.2.27. 2-(3-Hydroxy-6-methylpyridin-2-yl)-4,4,5,5tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-oxyl (4g)

Compound **4g** was prepared in exactly the same manner as **4f**. Yield 73%, vinous crystals, decomp. at 198–200 °C (from a mixture of C₆H₆ with hexane). IR (KBr): $\tilde{\nu}$ (cm⁻¹) 663, 746, 778, 842, 873, 927, 970, 1044, 1117, 1135, 1169, 1225, 1247, 1283, 1368, 1416, 1448, 1493, 1529, 1576, 2944, 2995, 3436 br. *Anal.* Found: C, 58.8; H, 6.8; N, 15.8. Calc. for C₁₃H₁₈N₃O₃: C, 59.1; H, 6.7; N, 15.9%.

2.2.28. 2-(1-Hydroxy-4,4,5,5-tetramethyl-3-oxy-4,5dihydro-1H-imidazol-2-yl)-6-(4,4,5,5-tetramethyl-3-oxy-1-oxyl-4,5-dihydro-1H-imidazol-2-yl)-3-hydroxypyridin (11)

Compound 11 was prepared in exactly the same manner as 4f except that the molar ratio 8/NaIO₄ was 1/3. The product was purified by column chromatography on SiO₂ (elution with CHCl₃). Yield 68%, green crystals, decomp. at 168 °C (from a mixture of C₆H₆ with hexane). IR (KBr): $\tilde{\nu}$ (cm⁻¹) 680, 774, 849, 1020,

1133, 1290, 1371, 1421, 1456, 1522, 1598, 2942, 2996, 3229 br., 3450 br. Anal. Found: C, 61.0; H, 7.6; N, 14.6. Calc. for $C_{13}H_{18}N_3O_3$: C, 59.1; H, 6.7; N, 15.9%.

2.2.29. 2,6-Bis-(4,4,5,5-tetramethyl-3-oxy-1-oxyl-4,5dihydro-1H-imidazol-2-yl)-3-hydroxypyridin (**9**)

Compound **9** was prepared in exactly the same manner as **4f** except that the molar ratio **8**/NaIO₄ was 1/6, and reaction time was 6 h. Yield 76%, violet crystals, decomp. at 168 °C (from a mixture of C₆H₆ with CH₂Cl₂). IR (KBr): $\tilde{\nu}$ (cm⁻¹) 596, 846, 871, 1111, 1138, 1170, 1220, 1253, 1303, 1370, 1416, 1454, 1523, 1583, 2989, 3423 br. *Anal.* Found: C, 56.0; H, 6.7; N, 17.2. Calc. for C₁₉H₂₇N₅O₅: C, 56.3; H, 6.7; N, 17.3%.

2.2.30. 2-(1-Hydroxy-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-2-yl)-pyridin-3-ol (**6f**)

A mixture of **3f** (0.51 g, 2.0 mmol) and SeO₂ (22 mg, 0.2 mmol), was refluxed in MeOH (30 ml) for 1 h. After cooling, the reaction mixture was filtered, and the solvent evaporated. The residue was treated with ether, washed with hexane, filtered off, and recrystallized from AcOEt. Yield 0.35 g (74%), yellow crystals, m.p. 150–151 °C $R_{\rm f}$ (AcOEt) 0.12. ¹H NMR (acetone- d_6): $\delta = 1.40$ (s, 6H, Me), 1.42 (s, 6H, Me), 6.82 (br. s, 0.68H), 7.15 (dd, 1H, J = 7.8 Hz, J = 1.4 Hz, H(4′)), 7.38 (dd, 1H, J = 7.8 Hz, J = 4.4 Hz, H(5′)), 7.99 (dd, 1H, J = 4.4 Hz, J = 1.4 Hz, H(6′)). IR (KBr): $\tilde{\nu}$ (cm⁻¹) 644, 757, 808, 829, 896, 1002, 1057, 1127, 1151, 1251, 1301, 1366, 1415, 1468, 1513, 1545, 1595, 1613, 2977, 3002, 3179 br. *Anal.* Found: C, 61.0; H, 7.5; N, 17.6. Calc. for C₁₂H₁₇N₃O₂: C, 61.3; H, 7.3; N, 17.9%.

2.2.31. 2-(1-Hydroxy-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-2-yl)-pyridin-6-methyl-3-ol (**6**g)

Compound **6g** was prepared in exactly the same manner as **6f**. Yield 61%, yellow crystals, m.p. 170–171 °C (from a mixture of C₆H₆ with hexane 1:1, v/v). ¹H NMR (CDCl₃): $\delta = 1.40$ (s, 6H, Me), 1.46 (s, 6H, Me), 2.47 (s, 3H, Me), 5.86 (br. s, 1H), 7.18–7.30 (m, 2H, H(4'), H(5')). IR (KBr): $\tilde{\nu}$ (cm⁻¹) 658, 696, 754, 772, 836, 891, 918, 1004, 1106, 1127, 1254, 1290, 1330, 1369, 1506, 1575, 2934, 2979, 3349 br. *Anal.* Found: C, 62.8; H, 7.7; N, 16.7. Calc. for C₁₃H₁₉N₃O₂: C, 62.6; H, 7.7; N, 16.9%.

Solutions of 2-(3-hydroxypyridin-2-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1*H*-imidazol-1-oxyl (HL^6) and 2-(3-hydroxy-6-methylpyridin-2-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1*H*-imidazol-1-oxyl (HL^7) 2,6-bis-(4,4,5,5tetramethyl-1-oxyl-4,5-dihydro-1*H*-imidazol-2-yl)-3-hydroxypyridin and (HL^8) were prepared in exactly the same manner as the solution of HL^1 . Alternatively, solutions of HL^6 , HL^7 were prepared by oxidation of **6f** and **6g** with NaIO₄ by the standard procedure.

Evaporation of the solution of HL^6 [R_f (AcOEt) 0.68; R_f (aluminium oxide on aluminium sheets, 60 F₂₅₄

neutral, Merck, CHCl₃) 0.85] gave 6-methyl-2-(4,4,5,5-tetramethyl-3-oxy-4,5-dihydro-1*H*-imidazol-2-yl)-pyridin-3-ol (**5f**) [$R_{\rm f}$ (AcOEt) 0.55; $R_{\rm f}$ (aluminium oxide on aluminium sheets, 60 F₂₅₄ neutral, Merck, CHCl₃) 0.42]. M.p. 153–154 °C. ¹H NMR (acetone- d_6): $\delta = 1.40$ (s, 6H, Me), 1.47 (s, 6H, Me), 5.84 (br. s, 1H, NH), 7.30 (br. s, 1H H(4')), 7.35 (br. s, 1H, H(5')), 8.02 (br. s, 1H, H(6')). IR (KBr): $\tilde{\nu}$ (cm⁻¹) 658, 709, 757, 772, 813, 894, 1086, 1121, 1144, 1224, 1253, 1313, 1369, 1464, 1497, 1542, 1593, 2940, 2982, 3320 br. *Anal.* Found: C, 61.5; H, 7.3; N, 18.0. Calc. for C₁₂H₁₇N₃O₂: C, 61.3; H, 7.3; N, 17.9%.

2.2.32. CuL_2^1 (**I**)

Et₃N (two drops) was added to a solution of freshly synthesized red-colored ligand HL^1 in CHCl₃ (10 ml). A solution of CuCl₂·2H₂O (60 mg, 0.35 mmol) in MeOH (3 ml) was poured in with stirring. The resulting transparent green solution was dried in a flow of air. CH₂Cl₂ (10 ml) was poured to the residue. The mixture was stirred and filtered. MeOH (9 ml) was added to the filtrate in such a way that a second layer formed. After 6 h, dark green crystals shaped as parallelepipeds suitable for an X-ray diffraction analysis formed on the walls of the flask. After their separation, the mother solution was kept at ambient temperature for 1 day, and an additional amount of I was filtered off. Yield 100 mg (62% based on 4a). Decomp. at 190 °C. IR (KBr): $\tilde{\nu}$ (cm^{-1}) 765, 880, 1135, 1248, 1344, 1429, 1466, 1525, 1552, 1600, 2929, 2986. Anal. Found: C, 57.3; H, 5.8; N, 10.3. Calc. for $C_{26}H_{32}CuN_4O_4$: C, 59.1; H, 6.1; N, 10.6%.

2.2.33. CuL_2^2 (**II**)

CuL₂² (**II**) was prepared by the same procedure as CuL₂¹ (**I**). Yield 105 mg (52% based on **4b**). IR (KBr): $\tilde{\nu}$ (cm⁻¹) 667, 823, 1135, 1242, 1322, 1463, 1517, 1594, 2927, 2980. *Anal.* Found: C, 45.6; H, 4.5; Br, 23.0; N, 8.2. Calc. for C₂₆H₃₀Br₂CuN₄O₄: C, 45.5; H, 4.4; Br, 23.3; N, 8.2%.

2.2.34. CuL_2^3 (III)

A mixture of HL³ (50 mg, 0.18 mmol), CuCl₂·2H₂O (15 mg, 0.09 mmol), CH₂Cl₂ (5 ml), CH₃OH (3 ml), and Et₃N (two drops) was stirred for 10 min. The resulting dark brown solution was dried in a flow of air. The residue was extracted with CH₂Cl₂ (7 ml). The solution was filtered, and MeOH (4 ml) was added to the filtrate. The mixture was stirred for 10–15 min, whereupon the solvent was evaporated in a flow of air to the amount of 2–3 ml. The brown crystals were filtered off and washed with MeOH (3 ml). Yield 50 mg (90%). IR (KBr): \tilde{v} (cm⁻¹) 675, 832, 920, 1128, 1314, 1467, 1604, 2927, 2979, 3439. *Anal.* Found: C, 49.5; H, 4.9; N, 13.1. Calc. for C₂₆H₃₀CuN₆O₈: C, 50.5; H, 4.9; N, 13.6%.

2.2.35. $CuL_2^4 \cdot 0.5 \ CHCl_3 \ (IV)$

A mixture of HL^4 (100 mg, 0.28 mmol), CuCl₂·2H₂O (25 mg, 0.14 mmol), CH₂Cl₂ (5 ml), CH₃OH (5 ml), and Et₃N (two drops) was stirred until a transparent brownish green solution formed, whereupon the solvent was removed by drying the solution in air, and the residue extracted with CH₂Cl₃ (7 ml). The resulting solution was filtered. MeOH (5 ml) was added to the filtrate in such a way that a second layer formed. The mixture was allowed to stay at ambient conditions. After 10 h, dark-green crystals shaped as parallelepipeds formed on the walls and bottom of the flask. Yield 55 mg (47%), decomp. at 230 °C. IR (KBr): \tilde{v} (cm⁻¹) 539, 668, 729, 824, 833, 1138, 1251, 1430, 1450, 1533, 1601, 2982. Anal. Found: C, 37.7; H, 3.3; N, 9.6. Calc. for $C_{26.5}H_{8.5}Br_2Cl_{1.5}CuN_6O_8$: C, 38.1; H, 3.4; N, 10.1%. The crystals suitable for an X-ray analysis were prepared by slow diffusion of MeOH to a CH₂Cl₂ solution of IV.

2.2.36. $[Cu(hfac)L^3]_2 \cdot CH_2Cl_2(V)$

A mixture of Cu(hfac)₂ (85 mg, 0.18 mmol), HL³ (50 mg, 0.18 mmol), and CH₂Cl₂ (7 ml) was stirred for 20 min. Petroleum ether (8 ml) was added to the reaction mixture. The solution was allowed to stay for 10 h at ambient temperature, whereupon dichroic greenish-brown single crystals shaped as parallelepipeds formed in the flask. Yield 70 mg (65%). IR (KBr): \tilde{v} (cm⁻¹) 448, 674, 755, 831, 846, 919, 1127, 1257, 1313, 1466, 1492, 1566, 1604, 2979, 3125. *Anal.* Found: C, 39.0; H, 2.9; N, 6.6. Calc. for C₃₇H₃₄Cl₂Cu₂F₁₂N₆O₁₂: C, 37.6; H, 2.9; N, 7.1%.

2.3. X-ray structure determination

Single crystal data were collected on P4 and SMART APEX Bruker AXS automatic diffractometers at ambient temperature using the standard procedure (Mo radiation, $2 < \theta < 25^{\circ}$). The structures were solved by direct methods. The full-matrix least-squares refinement was performed anisotropically for nonhydrogen atoms and isotropically for hydrogens. Some H atoms were localized in difference electron density syntheses; the others were generated theoretically. All structure solution and refinement calculations were carried out with SHELX-97 software. The crystal data for the compounds and details of experiment, as well as selected bond lengths and angles are gives in Tables 1–4.

2.4. Magnetic measurements

All measurements were carried out on an MPMS-5s Quantum Design SQUID magnetometer (2–300 K, magnetic field 5 kOe). The calculation of molar magnetic susceptibility (χ) was carried out with allowance for atomic diamagnetism. The effective magnetic mo-

Table 1 Crystallographic data for 1,3-dihydroxyimidazolidines **3b**, **3g**; nitrones **5b**, **5f**, and quinone **12**

Formula	3b	3g	5b	5f	12	
	C13H18BrN2O3	$C_{13}H_{21}N_3O_3$	$C_{13}H_{17}BrN_2O_2$	$C_{12}H_{17}N_3O_2$	$C_{13}H_{15}BrN_2O_3$	
Diffractometer	Smart APEX	Smart APEX	Smart APEX	P4	Smart APEX	
T (K)	295	295	295	295	295	
Space group	C2/c	$P2_1/n$	Pccn	C2/c	$P\overline{1}$	
Ζ	8	4	8	8	2	
Unit cell						
a (Å)	23.433(7)	11.429(3)	22.397(2)	16.331(3)	6.059(2)	
b (Å)	11.960(3)	11.639(3)	10.8753(9)	16.546(3)	11.270(3)	
c (Å)	11.960(3)	12.012(3)	11.714(1)	11.356(2)	11.687(3)	
α (°)					112.052(4)	
β (°)	120.692(1)	115.175(4)		123.01(3)	103.847(4)	
γ(°)					99.452(4)	
V (Å ³)	2882(1)	1446.0(7)	2853.3(4)	2573.2(9)	688.9(3)	
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.522	1.228	1.458	1.215	1.577	
$\mu ({\rm mm^{-1}})$	2.858	0.088	2.878	0.085	2.989	
Ihkl meas/uniq	6009/2091	8602/3396	11 406/2046	2304/2272	2978/1968	
R _{int}	0.1929	0.0328	0.1062	0.0299	0.0938	
I_{hkl}/N	2091/240	3396/248	2046/232	2272/223	1968/233	
Goodness-of-fit	0.996	1.073	0.630	1.010	0.858	
$R_1 (I_{hkl} > 2\sigma_{\rm I})$	0.0626	0.0440	0.0350	0.0378	0.0516	
wR_2	0.1588	0.1289	0.0866	0.0930	0.1222	
R_1	0.0695	0.0496	0.0490	0.0592	0.0711	
wR_2	0.1654	0.1331	0.0944	0.1040	0.1358	
N–O	1.435(4)	1.440(1)	1.354(3)	1.351(2)		
	1.442(4)	1.433(1)				
C-N	1.471(5)	1.485(1)	1.305(3)	1.302(2)	1.349(6)	
	1.483(5)	1.468(1)	1.357(4)	1.346(2)	1.317(7)	
${\it \ \ } {\it \ \ } CN_2 {\rm - } Ph$	75.7(1)	76.1(3)	32.2(2)	25.8(2)	5.0(6)	

ment was calculated by the formula $\mu_{\text{eff}} = [(3k/N_A\beta^2)\chi T]^{1/2} \approx (8\chi T)^{1/2}$.

structure was proven by X-ray investigation (Fig. 2). Further oxidation of **11** to **9** is hindered, taking much more time and demanding an excess of oxidant.

3. Results and discussion

3.1. Syntheses of ligands

In the first step, we synthesized nitronylnitroxides 4ag, 9, which were prepared by coupling of aldehyde 1a-g, 7 with 2,3-bis(hydroxylamino)-2,3-dimethylbutane (2) [11,12] followed by oxidation as described by Ullman et al. [17] (Scheme 1). The structures of nitroxides 4b, 4c, 4g, 9 and 1,3-dihydroxyimidazolidines 3b, 3g obtained as single crystals were confirmed by X-ray analysis (Figs. 1 and 2).

Note that oxidation of 1,3-dihydroxyimidazolidines 3b-e initially quickly gives a yellow solid precipitate, whose further oxidation leads to nitroxides 4b-c. As an example we isolated a yellow intermediate, which formed on oxidation of 3b; this product was identified as 1-hydroxy-2-imidazoline-3-oxide (10). Oxidation of bis(1,3-dihydroxyimidazolidine) derivative 8 is a special case; at first it leads to a green monoradical 11, whose

Treatment of nitroxides 4a-e with NaNO₂ by the standard procedure [17] led to the desired HL^1-HL^8 . Isolation of each HL^n , however, had its own specific features.

Because of its instability on storage for 1-2 h in solution or on concentration, HL^1 was introduced in the reaction leading to the Cu(II) complex, which is much more stable, immediately after purification by column chromatography on Al₂O₃ (Fig. 6). Referring to decomposition of HL^1 in solution, one can note that one of the decomposition products is **5a**, whose formation was confirmed by TLC by comparing with the authentic sample obtained by interaction of **3a** with SeO₂.

Table 2 Crystallographic data for nitroxides **4b**, **4c**, **4g**, **9**, **11**, **HL**³, **HL**⁴

Formula	4b	4c	4g	9	11	HL ³	HL^4
	$C_{13}H_{16}BrN_2O_3$	$C_{13}H_{16}N_3O_5\cdot^1/_4$ C_7H_8	$C_{13}H_{18}N_3O_3$	$C_{20}H_{24}N_5O_5$ · CH ₂ Cl ₂	$\begin{array}{c} C_{20}H_{28}N_5O_5\cdot\\ CH_2Cl_2\cdot H_2O\end{array}$	$C_{13}H_{16}N_{3}O_{4}$	C ₁₃ H ₁₅ BrN ₃ O ₄
Diffractometer	SMART APEX	SMART APEX	SMART APEX	P4	P4	SMART APEX	SMART APEX
T (K)	295	295	295	295	295	240	240
Space group	$P2_1/n$	ΡĪ	Pbca	$P2_1/c$	ΡĪ	$P2_1/n$	$P2_{1}2_{1}2$
Z	4	4	8	4	2	4	8
Unit cell							
a (Å)	9.712(2)	7.3336(8)	15.066(1)	12.338(2)	1.810(2)	9.137(3)	20.569(4)
$b(\mathbf{A})$	11.806(3)	11.829(1)	11.479(1)	16.533(3)	11.934(2)	11.394(3)	21.857(4)
$c(\dot{A})$	13.256(3)	17.879(2)	15.820(2)	11.786(2)	11.945(2)	13.731(4)	6.623(1)
α (°)		84.419(2)			116.70(3)		
β	111.174(3)	85.948(2)		92.38(1)	116.61(3)	107.846(6)	
γ (°)	~ /	89.310(2)			92.68(3)		
$V(Å^3)$	1417.3(6)	1539.8(3)	2736.0(4)	2402(2)	1278.2(4)	1360.7(7)	2978(1)
$D_{c} (g \text{ cm}^{-3})$	1.538	1.369	1.283	1.353	1.324	1.358	1.594
$\mu ({\rm mm}^{-1})$	2.906	0.104	0.093	0.310	0.297	0.102	2.780
I_{hkl} meas/uniq	5770/2032	6681/4400	15615/3278	4438/4216	3432/3188	5709/1965	12979/4303
Rint	0.1057	0.0787	0.2003	0.0397	0.0389	0.1918	0.1060
I_{hkl}/N	2032/232	4400/558	3278/245	4216/415	3188/427	1965/246	4303/492
Goodness-of-fit	0.929	1.278	1.057	0.955	0.993	0.868	0.862
$R_1 (I_{hkl} > 2\sigma_I)$	0.0529	0.0660	0.0800	0.0657	0.1029	0.0914	0.0584
wR_2	0.1195	0.1832	0.1824	0.1421	0.2656	0.1529	0.1169
R_1	0.0790	0.0787	0.1136	0.1581	0.1582	0.2407	0.0817
wR_2	0.1530	0.1943	0.2038	0.1842	0.3130	0.2040	0.1274
N–O (nitrox-	1.306(5)	1.304(3)	1.269(2)	1.280(5)	1.382(3)	1.308(7)	1.267(6)
)	1.278(4)	1.268(3)	1.276(2)	1.293(4)	1.337(3)		1.272(8)
	112/0(1)	1.299(3)	11270(2)	1.276(5)	1.292(3)		112/2(0)
		1 275(3)		1 285(5)	1.273(2)		
C-N	1 327(6)	1 321(3)	1 341(3)	1 332(5)	1.374(3)	1 355(8)	1 402(8)
0 11	1 362(6)	1 348(3)	1 334(3)	1 334(6)	1 314(3)	1 276(8)	1 401(8)
	110 02(0)	1 317(3)	100 (0)	1 320(5)	1 341(3)	112/0(0)	1 276(7)
		1.345(3)		1.347(5)	1.352(3)		1.252(9)
/ CN ₂ -Ph	34.7(2)	37.2(1)	74.0(2)	77.1(2)	15.4(3)	0.7(9)	4.7(1)
	(=)	38.5(1)	(_)	60.5(2)	19.1(3)	(5)	6.5(1)

Reduction of **4b** leads to solution of nitroxide HL^2 ; removing of the solvent gave hydroxyimidazoline **5b**, and benzoquinone **12** as major products. The structure of **5b** and **12** was confirmed by X-ray analysis (Figs. 1 and 4); structure analysis of HL^2 was carried out for its Cu(II) complex (Fig. 6).

Spin-labeled Schiff bases HL^3 , HL^4 were isolated individually (Fig. 3). Nitroxide HL^5 and hydroxypyridinyl derivatives HL^6-HL^8 as well as HL^1 and HL^2 may not be isolated from solution. For example, evaporation of a solution of HL^5 or HL^6 leads to nitrones **5e**, **f**. The structure of **5f** was proven by direct X-ray investigation.

For synthesis of HL^3 , one can effectively use route b, d as well as the alternative route c, b [18] (Scheme 1). HL^4 was only isolated in the case of c, b. The yields of HL^1 and HL^2 in reaction c, b were much lower. Note that treatment of 3a-e with SeO₂ forms 5a-e; the structure of one of these compounds (5b) was confirmed by X-ray analysis (Fig. 1). Dehydration of hydroxypyridyl derivatives 3f, 3g by SeO₂ forms hydroxylamines 6f, 6g, differing widely in their spectral characteristics from nitrone 5f.

Since HL^1 , HL^2 , HL^5-HL^8 could not be isolated as solids, for syntheses of their complexes we used their

Table 3 Crystallographic data for complexes I–V

Compound	CuL ¹ ₂ (I)	CuL_2^2 (II)	CuL ³ ₂ (III)	$CuL_2^4 \cdot CH_2Cl_2$ (IV)	$[CuL^{3}(hfac)]_{2} \cdot CH_{2}Cl_{2} (V)$
Space group	ΡĪ	C2/c	$P2_1/n$	PĪ	C2/c
Z	2	4	4	2	4
Unit cell					
a (Å)	10.154(2)	27.145(4)	12.561(3)	11.063(1)	18.457(3)
b (Å)	10.388(2)	10.138(1)	12.300(3)	11.930(1)	19.490(2)
c (Å)	13.340(3)	10.600(1)	17.889(5)	12.656(3)	14.998(2)
α (°)	70.46(3)			89.96(1)	
β (°)	71.02(3)	109.61(1)	98.24(2)	80.73(1)	117.310(10)
γ (°)	86.77(3)			82.69(1)	
V (Å ³)	1251.8(4)	2747.9(6)	2735(2)	1634.7(5)	4793.8(11)
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.401	1.658	1.501	1.662	1.636
$\mu ({\rm mm}^{-1})$	0.912	3.742	0.859	3.249	1.109
θ -Range (°)	2.08 - 24.99	2.16 - 25.00	2.02 - 25.00	1.88 - 25.00	1.80 - 25.00
Ihkl meas/uniq	4591/4333	2389/2388	4826/4593	6048/5724	4352/4215
R _{int}	0.0371	0.1178	0.0686	0.0358	0.0292
I_{hkl}/N	4333/440	2388/229	4593/491	5724/462	4215/393
Goodness-of-fit	0.997	1.038	0.920	0.978	0.870
$R_1 (I_{hkl} > 2\sigma_{\rm I})$	0.0539	0.0674	0.0703	0.0692	0.0604
wR_2	0.1161	0.1800	0.0952	0.1794	0.1584
R_1	0.1048	0.0879	0.2145	0.1187	0.1219
wR_2	0.1365	0.1992	0.1337	0.2126	0.2064

*N-parameters.

solutions. HL^3 , HL^4 were isolated as solids because the 2-hydroxyphenyl derivatives of iminonitroxides are stabilized by the introduction of an acceptor substituent in the aromatic ring.

3.2. Crystal structure of organic molecules

In molecules **3b** and **3g**, the 5-membered heterocycles are shaped as an envelope; the deviation of one of their

Table 4 Selected bond lengths (Å) and angles (°) for complexes $I{-}V$

Compound	CuL ¹ ₂ (I)	CuL_2^2 (II)	CuL_2^3 (III)	$CuL_{2}^{4} \cdot CH_{2}Cl_{2}$ (IV)	$[CuL^{3}(hfac)]_{2} \cdot CH_{2}Cl_{2} (V)$
CN	4	4	4	4	5
Cu–O	1.882(3)	1.868(5)	1.878(4)	1.893(2)	1.917(4) 2.258(4)
	1.870(3)		1.890(5)	1.899(2)	1.929(4) 2.027(5)
Cu-N	1.988(3)	1.989(5)	1.946(6)	1.982(3)	1.981(5)
	1.976(3)		1.945(5)	1.970(2)	
N-O (nitroxide)	1.264(4)	1.262(7)	1.286(7)	1.273(3)	1.293(7)
	1.270(4)		1.265(6)	1.284(3)	
∠ OCuN	90.5(1)	91.2(2)	93.2(2)	90.96(9)	90.0(2)
	91.8(1)		92.6(2)	92.29(8)	
∠ (OCuN–OCuN)	41.1(1)	35.4(2)	53.6(2)	40.47(9)	28.8(3)
$-\cdot \mathbf{O} \cdot \cdot \cdot \mathbf{O} \cdot -$	3.825	3.393	5.955	3.913	>5 Å
$\angle CN_2 - Ph$	27.9(4)	16.5(6)	19.5(6)	29.0(3)	26.8(4)
	9.8(5)		16.7(8)	23.7(3)	
$\angle NO_2$ -Ph			6.7(9)	58.6(3)	15.3(7)
			4.7(1.3)	52.6(2)	
$-\cdot \mathbf{O} \cdot \cdot \cdot \mathbf{O}_{\mathbf{NO}}$			3.026		3.180
2			3.236		
$Cu \cdot \cdot - \cdot O$	5.238	5.277	5.228	5.212	5.253
	5.300		5.255	5.233	
$Cu{\cdot}\cdot O{\cdot} -$			4.628		4.499
Cu···Cu					3.257

Fig. 1. Structure of 1,3-dihydroxyimidazolidines 3b, 3g and nitrones 5b, 5f.

N atoms is ~ 0.7 Å, and the C–N and N–O distances are close to single bond lengths (1.471-1.485 and 1.433-1.435 Å, respectively). The phenyl ring lies at an angle of $\sim 75^\circ$ to the plane of the CN_2 fragment of the heterocycle, leading to the formation of two nonequivalent intramolecular hydrogen bonds between the hydroxyl group and the nitrogen atoms in **3b** $(O \cdots N)$ 2.668 and 2.943 Å) and of one intramolecular hydrogen bond in 3g (N···O 2.616 Å). Localization of the H atom on the N atom of the imidazolidine ring in 5b and 5f suggests that the molecule is of nitrone form. In the O-N-C-N-H fragment, the O and H atoms deviate from the CN₂ plane by -0.15 and +0.26 Å (**5b**) and 0.05 and -0.20 Å (5f), respectively. In 5b, the NH group forms an intermolecular hydrogen bond with the O atom of the NO group of the neighboring molecule, linking molecules in chains. In 5f, this role is performed by the H-bond between the NH groups and the pyridine nitrogen atom. The angles between the planes of the phenyl or pyridine cycle and the CN₂ fragment are much

smaller than those in **3b** and **3g** (Table 1). The N–O bond lengths are 1.351–1.354 Å, and the C–N bonds are nonequivalent: C=N(\rightarrow O) 1.302–1.305 and C–N(–H) 1.346–1.357 Å.

In iminonitroxides HL^3 and HL^4 and nitronylnitroxides 4b, 4c, 9, 4g, 11, the N–O bonds are still shorter, up to 1.308. The O[•]-N–C=N and O[•]-N–C=N→O fragments are virtually planar. The angle between the plane of the CN₂ fragment and the phenyl ring is ~ 35° in nitronylnitroxides and up to 7° in iminonitroxides (Table 2). In molecule 11, the N–O bond lengths differ: 1.273 and 1.292 Å in the 'nitronylnitroxide' moiety and 1.382 and 1.337 Å in the hydroxylamine moiety.

In quinone 12, the conformation of the imidazolidine ring is close to that in nitronylnitroxides and iminonitroxides. The sum of the angles at the N atoms is 350.0 and 348.4° versus 330° in **3b** and **3g**. The C=O distances are in the range 1.194–1.226 Å.

3.3. Magnetic properties of ligands and their precursors

For radicals $4\mathbf{a}-\mathbf{g}$, \mathbf{HL}^3 , \mathbf{HL}^4 , $\mathbf{11}$, μ_{eff} at room temperature is close to the theoretical value (1.73 B.M.); for biradical 9 μ_{eff} is 2.45 M. For $4\mathbf{e}-\mathbf{g}$, \mathbf{HL}^3 , \mathbf{HL}^4 , 9, 11, the value of μ_{eff} is constant up to 10 K.

For radicals 4a, 4b, 4c, HL⁴, the dependences $\mu_{eff}(T)$ and $\chi(T)$ are shown in Fig. 5.

A description of these dependences using the Bleaney–Bowers model [19] gave optimal parameters presented in Table 5 (in Fig. 5, the theoretical curves are shown as solid lines).

3.4. Syntheses of complexes

Complexes **I**–**IV** were prepared by addition of a methanolic solution of $CuCl_2 \cdot 2H_2O$ to the solution of freshly synthesized ligand in CHCl₃ or CH₂Cl₂ in the presence of Et₃N. Single crystals of the compounds were grown under conditions of slow diffusion of methanol into the CHCl₃ or CH₂Cl₂ solution of the complex. Compound V was obtained by the reaction of Cu(hfac)₂ with **HL**³ in CH₂Cl₂. The crystals were grown from a mixture of CH₂Cl₂ with petroleum ether.

3.5. Crystal structure of the complexes

In CuL₂ⁿ (I–IV), the environment of the copper atom is a flattened tetrahedron (Fig. 6), whose distortion depends on the substituent in the benzene ring (\angle (OCuN–OCuN) 35.4° for CuL₂², 40.5° for CuL₂⁴, 41.1° for CuL₂¹, 53.6° for CuL₂³). The ligand is cyclic bidentate and is coordinated by the imine nitrogen atom of the imidazoline ring and the oxygen atom of the deprotonated hydroxyl group. The Cu–O and Cu–N distances in CuL₂ⁿ are 1.868–1.899 and 1.945–1.989 Å, respectively. The mixed-ligand complex V is formed by

Fig. 2. Structure of nitronylnitroxides 4b, 4c, 4g, 9, 11.

the centrosymmetric molecules of composition [CuL³(hfac)]2. The environment of the copper atom is a distorted trigonal bipyramid (Fig. 7), where the base is formed by the donor atoms O_{hfac} (Cu-O_{hfac} 2.027 Å), N_L (1.981 Å), and O_L of the neighboring L^3 (Cu-O_L 2.258 Å) and the apices are occupied by the O atoms (Cu-O_L 1.917 Å and Cu-O_{hfac} 1.929 Å). Thus L^3 performs a cyclic tridentate bridging function. The Cu···Cu distance in the dimer is 3.258 Å. The 6membered chelate ring formed by the paramagnetic ligand is nonplanar due to the rotation of the phenyl ring with respect to the CN₂ fragment of the imidazoline cycle, the rotation angle being from 9.8 to 29.0° . Also, note the difference in the arrangement of the NO₂ groups relative to the plane of the phenyl ring in III-V; in the complex with L^4 , the angle between the planes is as high as 52°. The N–O distances in the nitroxyl groups are typical of nitroxides: 1.262-1.293 Å. The shortest intermolecular distances between the oxygen atoms of the nitroxyl groups are found in CuL_2^2 .

3.6. Magnetic properties of the complexes

The experimental dependences $\mu_{eff}(T)$ of the copper complexes are presented in Fig. 8. They point to ferromagnetic exchange interactions in the molecules and antiferromagnetic interactions between the molecules.

The intramolecular interactions are quite effective, so that even at room temperature μ_{eff} slightly exceeds the theoretical values for uncoupled spins in all complexes under study. Above 100 K, the $\chi(T)$ dependences are well approximated by the Curie–Weiss equation with the parameters given in Table 6. The large value of the *C* constant for [CuL³(hfac)]₂ corresponds to the ferromagnetically ordered spins of the copper ions and iminoni-

Fig. 3. Structure of iminonitroxides HL³, HL⁴.

Fig. 4. Structure of quinone 12.

troxyl fragments coordinated by the imine nitrogen atom. Therefore, θ in this complex defines the interaction of the copper ions *via* the bridging oxygen atoms. Theoretical analysis of the experimental $\mu_{eff}(T)$ dependences for I–V was carried out in a cluster approximation using the approaches suggested in [20,21]. Optimal descriptions were obtained by using the model clusters: three-center exchange cluster (R–^JCu–^JR) for CuL³₂ and

Fig. 5. Experimental dependences $\mu_{eff}(T)$ and $\chi(T)$ for nitroxides 4a (\blacksquare), 4b (\bullet), 4c (\checkmark), HL⁴ (\blacklozenge). Solid lines—optimal theoretical curves.

Table 5	
Magnetic	paramete

Compound	$C (\mathrm{cm}^3 \mathrm{K} \mathrm{mol}^{-1})$	θ (K)	$J (\mathrm{cm}^{-1})$	σ
4a	0.375	-15.5	-11.8	0.00012
4b	0.376	-67.6	-36.3	0.00176
4c	0.369	-32.9	-18.1	0.0047
HL ⁴	0.373	-6.2	-1.6	0.00092

 CuL_2^4 , four-center exchange cluster $(R^{-J}Cu^{-JI}Cu^{-J}R)$ for $[CuL^3(hfac)]_2$, and alternant magnetic chain cluster $([-R-Cu-R^{-JI}R^{-J}Cu^{-J}R^{-JI}R^{-Cu}R]_n)$ for CuL_2^1 and CuL_2^2 . The optimal parameters obtained are presented in Table 6, and the corresponding theoretical curves are shown in Fig. 8 by solid lines.

The next step of our research is to use ligands HL^5 – HL^8 for the preparation of transition metal complexes; this work is now in progress.

4. Supplementary material

Crystal data for structural analysis of investigated compounds have been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos. 203058– 203074. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

This work was supported by RFBR (grants 03-03-32518, 02-03-33112) and Siberian Branch of RAS.

Fig. 6. Structure of complexes I-IV.

Fig. 7. Structure of [CuL³(hfac)]₂ (V).

Fig. 8. Experimental dependences $\mu_{eff}(T)$ for complexes CuL_2^1 (\Box), CuL_2^2 (\blacksquare), CuL_2^3 (\bullet), CuL_2^4 (\bigcirc), $[CuL^3(hfac)]_2$ (\blacklozenge). Solid lines—optimal theoretical curves.

Table 6	
Magnetic	parameters

Complex	$C (\mathrm{cm}^3 \mathrm{K} \mathrm{mol}^{-1})$	θ (K)	G	$J (\mathrm{cm}^{-1})$	J1 (cm ^{-1})	$nJ' (cm^{-1})$	σ
CuL ¹	1.208	25.7	2.15 ± 0.07	39 ± 5	-13 ± 3	-0.6 ± 0.1	0.0048
CuL_2^2	1.208	29.5	2.1 ± 0.1	51 ± 9	-25 ± 4	-0.7 ± 0.1	0.0079
CuL_2^3	1.211	35.5	2.15 ± 0.05	90 ± 30	0	-0.41 ± 0.08	0.0026
$[CuL^{3}(hfac)]_{2} \cdot CH_{2}Cl_{2}$	2.164	45.5	2.17 ± 0.1	350 ± 1	110 ± 12	-0.31 ± 0.02	0.00034
CuL ⁴ ₂	1.232	49.4	2.15 ± 0.05	120 ± 10	0	-0.12 ± 0.01	0.00082

References

- A. Caneschi, D. Gatteschi, P. Rey, Prog. Inorg. Chem. 39 (1991) 331.
- [2] V.I. Ovcharenko, R.Z. Sagdeev, Russ. Chem. Rev. 68 (1999) 345 (Engl. Transl.).
- [3] R.H. Holm, M.J. O'Connor, Prog. Inorg. Chem. 14 (1971) 241.
- [4] S. Yamada, A. Takeuchi, Coord. Chem. Rev. 43 (1982) 187.
- [5] L.O. Atovmyan, N.I. Golovina, G.A. Klitskaya, A.A. Medzhidov, A.V. Zvarykina, V.B. Stryukov, D.N. Fedutin, Zh. Strukt. Khim. 16 (1975) 624. Chem. Abstr. 83: 186701.
- [6] D. Jahr, K.E. Schwarzhans, D. Nothe, R.K. Burkert, Z. Naturforsch. Teil B 26 (1971) 1210.
- [7] J.R. Eaton, Inorg. Nucl. Chem. Lett. 8 (1972) 647.
- [8] N.P. Rodin, A.A. Medzhidov, T.M. Kutovaya, M.K. Guseinova, Zh. Strukt. Khim. 22 (1981) 85–89. Chem. Abstr. 94: 201152.
- [9] V.I. Ovcharenko, S.V. Fokin, V.N. Ikorskii, V.A. Reznikov, A.V. Podoplelov, J. Struct. Chem. 38 (1997) 626–636 (Engl. Transl.).

- [10] E.V. Tretyakov, I.V. Eltsov, S.V. Fokin, V.I. Ovcharenko, VIIth International Conference on Molecule-based Magnets, Valencia, Spain, 5–10 October, 2002. Abstract B-35.
- [11] V. Ovcharenko, S. Fokin, P. Rey, Mol. Cryst. Liq. Cryst. 334 (1999) 109.
- [12] V.I. Ovcharenko, S.V. Fokin, I.V. Korobkov, P. Rey, Russ. Chem. Bull. (Engl. Transl.) 48 (1999) 1519.
- [13] J. Cirujeda, M. Mas, E. Molins, F.L. Panthou, J. Laugier, J.G. Park, C. Paulsen, P. Rey, C. Rovira, J. Veciana, J. Chem. Soc. Chem Commun. (1995) 709.
- [14] N. Elming, Acta Chem. Scand. II (1957) 1496.
- [15] C.D. Weis, J. Heterocyclic Chem. 15 (1978) 29.
- [16] T.D. Lash, S.T. Chaney, Chem. Eur. J. 2 (1996) 944.
- [17] E.F. Ulman, L. Call, J.H. Osiecki, J. Org. Chem. 35 (1970) 3623.
- [18] G. Ulrich, R. Ziessel, Tetrahedron Lett. 35 (1994) 1215.
- [19] B. Bleaney, K.D. Bowers, Proc. Roy. Soc. A214 (1952) 451.
- [20] I.V. Ovcharenko, Yu.G. Shvedenkov, R.N. Musin, V.N. Ikorskii, Russ. J. Struct. Chem. 40 (1999) 29 (Engl. Transl.).
- [21] A.B. Gelman, V.N. Ikorskii, Zh. Strukt. Khim. 30 (1989) 81. Chem. Abstr. 111: 223878.